Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential Usefulness of Nine Commonly Used Genetic Markers for Identifying Phytophthora Species.

Identifieur interne : 000798 ( Main/Exploration ); précédent : 000797; suivant : 000799

Differential Usefulness of Nine Commonly Used Genetic Markers for Identifying Phytophthora Species.

Auteurs : Xiao Yang [États-Unis] ; Chuanxue Hong [États-Unis]

Source :

RBID : pubmed:30337915

Abstract

The genus Phytophthora is agriculturally and ecologically important. As the number of Phytophthora species continues to grow, identifying isolates in this genus has become increasingly challenging even by DNA sequencing. This study evaluated nine commonly used genetic markers against 154 formally described and 17 provisionally named Phytophthora species. These genetic markers were the cytochrome-c oxidase 1 (cox1), internal transcribed spacer region (ITS), 60S ribosomal protein L10, beta-tubulin (β-tub), elongation factor 1 alpha, enolase, heat shock protein 90, 28S ribosomal DNA, and tigA gene fusion protein (tigA). As indicated by species distance, cox1 had the highest genus-wide resolution, followed by ITS, tigA, and β-tub. Resolution of these four markers also varied with (sub)clade. β-tub alone could readily identify all species in clade 1, cox1 for clade 2, and tigA for clades 7 and 8. Two or more genetic markers were required to identify species in other clades. For PCR consistency, ITS (99% PCR success rate) and β-tub (96%) were easier to amplify than cox1 (75%) and tigA (71%). Accordingly, it is recommended to take a two-step approach: classifying unknown Phytophthora isolates to clade by ITS sequences, as this marker is easy to amplify and its signature sequences are readily available, then identifying to species by one or more of the most informative markers for the respective (sub)clade.

DOI: 10.3389/fmicb.2018.02334
PubMed: 30337915
PubMed Central: PMC6178919


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential Usefulness of Nine Commonly Used Genetic Markers for Identifying
<i>Phytophthora</i>
Species.</title>
<author>
<name sortKey="Yang, Xiao" sort="Yang, Xiao" uniqKey="Yang X" first="Xiao" last="Yang">Xiao Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hong, Chuanxue" sort="Hong, Chuanxue" uniqKey="Hong C" first="Chuanxue" last="Hong">Chuanxue Hong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30337915</idno>
<idno type="pmid">30337915</idno>
<idno type="doi">10.3389/fmicb.2018.02334</idno>
<idno type="pmc">PMC6178919</idno>
<idno type="wicri:Area/Main/Corpus">000642</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000642</idno>
<idno type="wicri:Area/Main/Curation">000642</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000642</idno>
<idno type="wicri:Area/Main/Exploration">000642</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential Usefulness of Nine Commonly Used Genetic Markers for Identifying
<i>Phytophthora</i>
Species.</title>
<author>
<name sortKey="Yang, Xiao" sort="Yang, Xiao" uniqKey="Yang X" first="Xiao" last="Yang">Xiao Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hong, Chuanxue" sort="Hong, Chuanxue" uniqKey="Hong C" first="Chuanxue" last="Hong">Chuanxue Hong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The genus
<i>Phytophthora</i>
is agriculturally and ecologically important. As the number of
<i>Phytophthora</i>
species continues to grow, identifying isolates in this genus has become increasingly challenging even by DNA sequencing. This study evaluated nine commonly used genetic markers against 154 formally described and 17 provisionally named
<i>Phytophthora</i>
species. These genetic markers were the cytochrome-
<i>c</i>
oxidase 1 (
<i>cox1</i>
), internal transcribed spacer region (ITS), 60S ribosomal protein L10, beta-tubulin (β
<i>-tub</i>
), elongation factor 1 alpha, enolase, heat shock protein 90, 28S ribosomal DNA, and
<i>tigA</i>
gene fusion protein (
<i>tigA</i>
). As indicated by species distance,
<i>cox1</i>
had the highest genus-wide resolution, followed by ITS,
<i>tigA</i>
, and β
<i>-tub</i>
. Resolution of these four markers also varied with (sub)clade. β
<i>-tub</i>
alone could readily identify all species in clade 1,
<i>cox1</i>
for clade 2, and
<i>tigA</i>
for clades 7 and 8. Two or more genetic markers were required to identify species in other clades. For PCR consistency, ITS (99% PCR success rate) and β
<i>-tub</i>
(96%) were easier to amplify than
<i>cox1</i>
(75%) and
<i>tigA</i>
(71%). Accordingly, it is recommended to take a two-step approach: classifying unknown
<i>Phytophthora</i>
isolates to clade by ITS sequences, as this marker is easy to amplify and its signature sequences are readily available, then identifying to species by one or more of the most informative markers for the respective (sub)clade.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30337915</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential Usefulness of Nine Commonly Used Genetic Markers for Identifying
<i>Phytophthora</i>
Species.</ArticleTitle>
<Pagination>
<MedlinePgn>2334</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2018.02334</ELocationID>
<Abstract>
<AbstractText>The genus
<i>Phytophthora</i>
is agriculturally and ecologically important. As the number of
<i>Phytophthora</i>
species continues to grow, identifying isolates in this genus has become increasingly challenging even by DNA sequencing. This study evaluated nine commonly used genetic markers against 154 formally described and 17 provisionally named
<i>Phytophthora</i>
species. These genetic markers were the cytochrome-
<i>c</i>
oxidase 1 (
<i>cox1</i>
), internal transcribed spacer region (ITS), 60S ribosomal protein L10, beta-tubulin (β
<i>-tub</i>
), elongation factor 1 alpha, enolase, heat shock protein 90, 28S ribosomal DNA, and
<i>tigA</i>
gene fusion protein (
<i>tigA</i>
). As indicated by species distance,
<i>cox1</i>
had the highest genus-wide resolution, followed by ITS,
<i>tigA</i>
, and β
<i>-tub</i>
. Resolution of these four markers also varied with (sub)clade. β
<i>-tub</i>
alone could readily identify all species in clade 1,
<i>cox1</i>
for clade 2, and
<i>tigA</i>
for clades 7 and 8. Two or more genetic markers were required to identify species in other clades. For PCR consistency, ITS (99% PCR success rate) and β
<i>-tub</i>
(96%) were easier to amplify than
<i>cox1</i>
(75%) and
<i>tigA</i>
(71%). Accordingly, it is recommended to take a two-step approach: classifying unknown
<i>Phytophthora</i>
isolates to clade by ITS sequences, as this marker is easy to amplify and its signature sequences are readily available, then identifying to species by one or more of the most informative markers for the respective (sub)clade.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hong</LastName>
<ForeName>Chuanxue</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">genetics</Keyword>
<Keyword MajorTopicYN="N">oomycetes</Keyword>
<Keyword MajorTopicYN="N">plant destroyers</Keyword>
<Keyword MajorTopicYN="N">plant disease diagnosis</Keyword>
<Keyword MajorTopicYN="N">plant pathology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30337915</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2018.02334</ArticleId>
<ArticleId IdType="pmc">PMC6178919</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycologia. 2003 Mar-Apr;95(2):269-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2017 Jun;38:100-135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29151629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2012 Nov-Dec;104(6):1390-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22684290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2000 Jun;30(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10955905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:309-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2013 May;117(5):329-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22454494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Dec;103(12):1204-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23961810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 1;22(1):117-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16234319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 Apr;77:12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25732380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA Fungus. 2017 Dec;8(2):355-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29242780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D41-D47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29140468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2014 Oct;79:279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24747002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Aug;41(8):766-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15219561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 29;9(7):e103450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25072374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 May;66:19-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24603058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Aug;100(8):732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1980 Dec;16(2):111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7463489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Mar;45(3):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2009 May;9 Suppl s1:83-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21564968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2009 Mar-Apr;101(2):220-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19397195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Yang, Xiao" sort="Yang, Xiao" uniqKey="Yang X" first="Xiao" last="Yang">Xiao Yang</name>
</region>
<name sortKey="Hong, Chuanxue" sort="Hong, Chuanxue" uniqKey="Hong C" first="Chuanxue" last="Hong">Chuanxue Hong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000798 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000798 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30337915
   |texte=   Differential Usefulness of Nine Commonly Used Genetic Markers for Identifying Phytophthora Species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30337915" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024